The Effects of Hyperoxia on Sea-Level Exercise Performance, Training, and Recovery: A Meta-Analysis.
نویسندگان
چکیده
BACKGROUND Acute exercise performance can be limited by arterial hypoxemia, such that hyperoxia may be an ergogenic aid by increasing tissue oxygen availability. Hyperoxia during a single bout of exercise performance has been examined using many test modalities, including time trials (TTs), time to exhaustion (TTE), graded exercise tests (GXTs), and dynamic muscle function tests. Hyperoxia has also been used as a long-term training stimulus or a recovery intervention between bouts of exercise. However, due to the methodological differences in fraction of inspired oxygen (FiO2), exercise type, training regime, or recovery protocols, a firm consensus on the effectiveness of hyperoxia as an ergogenic aid for exercise training or recovery remains unclear. OBJECTIVES The aims of this study were to (1) determine the efficacy of hyperoxia as an ergogenic aid for exercise performance, training stimulus, and recovery before subsequent exercise; and (2) determine if a dose-response exists between FiO2 and exercise performance improvements. DATA SOURCE The PubMed, Web of Science, and SPORTDiscus databases were searched for original published articles up to and including 8 September 2017, using appropriate first- and second-order search terms. STUDY SELECTION English-language, peer-reviewed, full-text manuscripts using human participants were reviewed using the process identified in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. DATA EXTRACTION Data for the following variables were obtained by at least two of the authors: FiO2, wash-in time for gas, exercise performance modality, heart rate, cardiac output, stroke volume, oxygen saturation, arterial and/or capillary lactate, hemoglobin concentration, hematocrit, arterial pH, arterial oxygen content, arterial partial pressure of oxygen and carbon dioxide, consumption of oxygen and carbon dioxide, minute ventilation, tidal volume, respiratory frequency, ratings of perceived exertion of breathing and exercise, and end-tidal oxygen and carbon dioxide partial pressures. DATA GROUPING Data were grouped into type of intervention (acute exercise, recovery, and training), and performance data were grouped into type of exercise (TTs, TTE, GXTs, dynamic muscle function), recovery, and training in hyperoxia. DATA ANALYSIS Hedges' g effect sizes and 95% confidence intervals were calculated. Separate Pearson's correlations were performed comparing the effect size of performance versus FiO2, along with the effect size of arterial content of oxygen, arterial partial pressure of oxygen, and oxygen saturation. RESULTS Fifty-one manuscripts were reviewed. The most common FiO2 for acute exercise was 1.00, with GXTs the most investigated exercise modality. Hyperoxia had a large effect improving TTE (g = 0.89), and small-to-moderate effects increasing TTs (g = 0.56), GXTs (g = 0.40), and dynamic muscle function performance (g = 0.28). An FiO2 ≥ 0.30 was sufficient to increase general exercise performance to a small effect or higher; a moderate positive correlation (r = 0.47-0.63) existed between performance improvement of TTs, TTE, and dynamic muscle function tests and FiO2, but not GXTs (r = 0.06). Exercise training and recovery supplemented with hyperoxia trended towards a large and small ergogenic effect, respectively, but the large variability and limited amount of research on these topics prevented a definitive conclusion. CONCLUSION Acute exercise performance is increased with hyperoxia. An FiO2 ≥ 0.30 appears to be beneficial for performance, with a higher FiO2 being correlated to greater performance improvement in TTs, TTE, and dynamic muscle function tests. Exercise training and recovery supplemented with hyperoxic gas appears to have a beneficial effect on subsequent exercise performance, but small sample size and wide disparity in experimental protocols preclude definitive conclusions.
منابع مشابه
Effect of Exercise Training on Serum FGF21 Level in Adults with Metabolic Disorders, A Meta-Analysis
Background and objective: Effects of exercise training on metabolic disorders through modifications in fibroblast growth factor -21 (FGF-21) level are controversial. Therefore, the aim of study was to determine the quantitative effect of exercise training protocols on serum FGF-21 level in adults with metabolic disorders. Methods: A systematic search of the published Persian or English-language...
متن کاملEffects of Resistance Training on Performance and Physiological Indices in Patients with Ischemic Stroke: A Systematic Review and Meta-Analysis
Background and purpose: This meta-analysis review aimed to investigate the effect of resistance training on functional performance and physiological factors in patients with ischemic stroke. Materials and methods: The search was conducted in PubMed, Web of Science, and Scopus using related keywords. All articles were reviewed, but 22 studies that met the inclusion criteria were included after ...
متن کاملReduction of Muscle Injuries and Improved Post-exercise Recovery by Branched-Chain Amino Acid Supplementation: A Systematic Review and Meta-Analysis
This meta-analysis and systematic review aimed to attain specific data on the effect of branched-chain amino acids (BCAAs) administration on muscle injuries and the indices of delayed-onset muscle soreness (DOMS) after exercise. Literature search was performed in databases such as Scopus, ISI, Web of Science, Scientific Information Database (SID), Cochrane Controlled Register of Trials (CENTRAL...
متن کاملThe Effect of Exercise Training on Inflammatory Markers in Patient with Metabolic Syndrome: A Systematic Review and Meta-analysis
Introduction: Metabolic syndrome is associated with an increase in chronic inflammation, in which exercise training may be an effective intervention for the improvement of inflammatory markers. Accordingly, this study aimed to investigate the effect of exercise training on the inflammatory markers of interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and C-reactive protein (CRP) in pati...
متن کاملEffects of Repeated-Sprint Training in Hypoxia on Sea-Level Performance: A Meta-Analysis.
BACKGROUND Repeated-sprint training in hypoxia (RSH) is a recent intervention regarding which numerous studies have reported effects on sea-level physical performance outcomes that are debated. No previous study has performed a meta-analysis of the effects of RSH. OBJECTIVE We systematically reviewed the literature and meta-analyzed the effects of RSH versus repeated-sprint training in normox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Sports medicine
دوره 48 1 شماره
صفحات -
تاریخ انتشار 2018